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Abstract. Computed tomography has been widely used in biomedical
and industrial applications. The well-known filtered back-projection al-
gorithm, probably the most used reconstruction technique, fails when
the angular range used for data acquisition is not sufficient. As a con-
sequence, reconstructions exhibit artifacts. In order to eliminate these
artifacts, we propose in this article a new deep learning approach based
on a U-net architecture which includes a morphological operation. This
operation of mathematical morphology allows us to capture better some
non-linear properties of the object to reconstruct. The proposed method
provides good results for angular ranges of 170, 150, 130 and even 110
degrees. To the best of our knowledge, it is the first time a limited-angle
artifact suppression method works with 110 projections.

Keywords: Computed tomography, Image reconstruction, Limited an-
gular projections, Mathematical morphology, Deep learning, U-Net

1 Introduction

Computed tomography (CT) is one of the main imaging techniques used today
in many areas such as the clinical diagnosis and material analysis. This imaging
technique rests on the measurement of transmitting rays along straight lines.
After being emitted by an x-ray tube, radiation is passing through the object to
scan and is finally received by a detector. Such a system needs to rotate around
the object to acquire a complete set of data, the data acquisition process is
mathematically modelled by the classical Radon transform on lines introduced
by Radon [I]. For image reconstruction, we need the inversion formula. Cor-
mack [2] was the forerunner of CT image reconstruction with the proposition
of an inversion formula for the Radon transform. This formula is the basis of
the well-known filtered back-projection (FBP) algorithm. As with all analytical
methods, the need for a high and uniform sampling rate is necessary. Conse-
quently, the FBP algorithm requires complete data with an uniform sampling,
that is for instance a consecutive 180° or respectively a 180° fan angle scan with
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Fig. 1: FBP reconstruction on a Lung with 6 € [20°,150°] and rotation step =
1 i.e. 130 projection views, The blue segments are the ”distortion” artifacts due
to limited-angle tomographic data, blue lines are the direction of the artifact

1° as a rotation step for parallel or fan beam reconstruction. However, when
the projection data cover an angular range of less than 180°, we are faced to a
limited-angle data problem. A limited-angle scan can arise in many situations,
for instance where we scan a large size object, when we use large-pitch helical
CT or we have to perform a restricted scanning. If one uses the FBP algorithm,
this results in images with heavy directional artifacts and distortions. Some al-
ternative reconstruction methods including optimization techniques have been
studied in order to improve reconstruction quality, such as singular value de-
composition (SVD) [3], total variation [4] and Tikhonov regularization [5]. Even
if the obtained results may be slightly better, these techniques cannot totally
correct the artifact patterns of CT images.

More recently, deep learning architectures using convolutional neural net-
works (CNN) have achieved overwhelming success in computer vision applica-
tions including image classification [6], denoising [7] and segmentation [8]. It is in
that context that some studies proposed also to use deep learning architectures
to tackle this type of image reconstruction problems. We review some of them
in the next paragraph.

Gu and Ye [9] adapted the U-net architecture [8] to learn artifacts in the
wavelet domain instead of directly learning the artifact-free image. Wang et al.
[10] proposed a U-net-based architecture to solve the problem by pre-processing
the input image using the simultaneous algebraic reconstruction technique [I1]
algorithm to reduce the limited-angle distortion. Tatiana and collaborators [12]
proposed a framework to solve the inverse problem of limited-angle CT by com-
bining model-based sparse regularization using shearlets with a data-driven deep
neural network approach. In [I3], Zhang et al. proposed an optimized deep con-
volutional neural network containing three layers. The objective of the first layer
is to extract the feature maps. The second is a non-linear mapping which allows
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reducing the artifacts, and the final layer was used to combine the extracted
maps, where each layer is modeled by a convolution operation with multiple
kernels. One can refer also to the work of Wiirfl et al. [14], where he proposed
a neural network architecture based on FBP to learn the compensation weights
for limited-angle reconstruction. This particular method showed some limits for
small angular ranges, e.g from 120°. In [I5], Wang et al. proposed a deep network
for sinogram denoising and CT image reconstruction simultaneously introducing
a FBP layer and combined it with two cascaded blocks.

In this paper, we concentrate on limited data coming from an incomplete
angular data coverage. We give an example of such reconstruction in Fig.
that is, when the FBP algorithm is used to recover the object from data on a
restricted angular domain of 6 € [20°,150°]. According to the considered angular
range, some specific features are recovered correctly whereas other zones suffer
from artifacts. This kind of artifacts is well characterized by microlocal analysis,
see e.g. [I6]. In fact, streak artifacts appear when the zones of the sinogram
corresponding to the features of the objects were suppressed because of limited-
angle data.

To remove the limited-angle artifact in CT images, we propose here a deep
network based on a U-net architecture and including the opening morphological
operator and residual learning. After the learning process, we faced this archi-
tecture to a validation test, different from training data, in order to prove that
the model is not overfitting. The reconstruction quality is quantitatively eval-
uated with the peak signal noise to ratio and the structural similarity index.
In addition, a comparison of our results with Tikhonov regularization and the
architecture proposed by Zhang [13] is proposed.

The outline of this paper is as follows. In section [2] we present the proposed
architecture suitable for artifact reduction. The obtained results are then pre-
sented in section [8] Then, Section [ ends the paper with a discussion about the
obtained results and some concluding remarks.

2 Materials and Methods

2.1 The proposition of an architecture convenient for
limited-angular data problem

The proposed architecture (see Fig. [2) is a U-net with an encoder path made of
4 blocks. Each of the blocks has respectively 8, 16, 32, and 64 kernel depth and
contains two successive convolutional layers with 3 x 3 filter with ReLu activation
followed by another convolutional layer with 1 x 1 filter with ReLu activation and
a batch normalization to avoid overfitting. A bottleneck is added with 128 filters
and two convolutional layers with 3 x 3 filter with ReLu activation followed by
another convolutional layer with 1 x 1 with ReLu activation. Each block consists
of two operations, an extraction and a nonlinear mapping, see for instance Figure
0l

The decoder path is also made of 4 up blocks. Each block has respectively
64, 32, 16, and 8 kernel depth, and each is related to the same resolution block
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Fig.2: Structure of the proposed deep convolutional network for artifact sup-
pression

of the encoder via a horizontal skip connection which skips some layer in the
neural network and feeds the output of one layer as the input to the next lay-
ers. A skip connection provides an alternative path for the gradient (with back
propagation), and gives the localization, where each block performs the same
operations as the same resolution block of the encoder. In the end block of the
architecture, a skip connection between the input and the output of the U-net
is also added. Thus, this allows the end block to learn the difference between
the input and the output. Moreover, in order to remove noise we added, to each
block of the decoder, a mathematical morphology layer which uses the opening
operator (composition of erosion and dilatation [I7/18]). In fact, the opening op-
erator removes small particles (smaller than the size of the structuring element
"kernel”, see Figure 3] for example, where the opening operation implements the
channel-wise max/min-plus convolution).

The choice of the number of filters is important, for the first block we have
chosen 8 filters in order to have very few feature maps that contains artifacts
(see Fig. @ Furthermore, we can observe that using the average pooling we
are able to eliminate the artifacts on 6 feature maps and that we still have one
with artifacts that will be eliminated thanks to the following blocks. Then, the
decoder will not only increase the resolution of the image but also correct the
shape of the object thanks to the mathematical morphology layer.

2.2 Dataset

To validate our architecture for artifact reduction and compare it to existing
methods, we performed an experiment on 7300 images of the standard clinical
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Fig.3: (5x5) opening noise removal using the opening operator, where the noise
is the small square, situated in the left-top corner of the image

dataset called PhantomFDA [I9] downloaded from TCIA [20], The size of the
images is 256 x 256 pixels. Figure |5 shows an example of used images.

Note that this dataset proposes only image reconstructions from complete set
of projections. As far as the author’s knowledge, no dataset providing limited
angle reconstructions is available. We construct our own set of reconstructed
images with different angular ranges (see Table [1]) from perfect reconstructions
using radon and iradon functions given in the skimage Python library [21].

Number of angular projections| Angular range

170 [10°,180°]-[0°,170°]
150 [30°,180°]-[20°,170°]

[10°,160°]-[0°,150°]
130 [50°,180°]-[40°,170°]

[30°,160°]-[20°,150°7]
[10°,140°]-[0°,1307]

Table 1: Angular range used to build the dataset

The input images for training and testing our algorithm (as well as the ones
used to train Zhang architecture) is the FBP reconstruction.

2.3 Data augmentation

To avoid the problem of overfitting we perform some data augmentation, where
4% of the original data was taken and we have performed one of the three
different transformations on each CT image randomly (see Fig. .

In addition to this, since the used angular range is also chosen randomly,
it can be considered also as a type of data augmentation, which reinforce the
robustness of the proposed reconstruction algorithm. In the proposed implemen-
tation, the probability of performing twice a reconstruction of the same image
for a different angular range is 0.4.
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2.4 Used libraries

We used the Tensorflow library [22] to generate our U-net architecture. This
library offers us a simple manipulation of the model parameters. The global
implementation of the architecture was implemented using the colab research
google platform, which offers free GPU usage to accelerate the learning process.

2.5 Quantitative image analysis

To evaluate the image quality quantitatively, we used two metrics, the Peak Sig-
nal Noise to Ratio (PSNR) and the Structural Similarity Index Metric (SSIM).
Denoting I,er the reference image and I the resulting image of the neural
network, the PNSR is obtained with the following relation

max(Irer)?
NSE > e

PSNR = 10 x log;, (

Fig. 4: Example of obtained images by data augmentation. (b) is the result of
applying a cropping with (200, 200) as a crop size, (c) a cropping followed by a
translation of 25 shifted pixels and (d) results in the rotation of a random angle
between 10° and 180° from the original FBP reconstructed image (a) with 130
angular projections

Fig.5: Example of used image. FBP reconstructions (b,c,d) for a respective
amount of 130, 150 and 170 angular projections from the original image (a)
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where the Mean Squared Error (MSE) is defined as:
1 N N
MSE = ﬁ X ZZ[Iref(i,j) - Ir<%s(iaj)}2 (2)
i=1 j=1

N is the length/width of the image and max([ef) the maximum pixel value of
the reference image.

In our case max(lof) = 1 because all images are values-normalized between
0 and 1, hence

PSNR = —10 x log,,(MSE) (3)

According to the literature, a value between 30 and 40 dB defines a good
quality image.
Furthermore, the SSIM is calculated as follows:

(2Tresjref + Cl)(2COV(Irefv Ires) + C2)

SSIM = ~=testrel 7
(Ires + Iref + 61)(0'365 + Ur%sf + 62)

(4)

where T is the mean value for I, o2 the variance, and covariance of intensities is
defined as follows:

1 N N B B

COV(Iref7 Ires) = m Z Z[Ires(iaj) - Ires] X [Iref(iaj) - Iref]

i=1 j=1

c1 = (k1L)?,co = (koL)? are two variables to stabilize the division with weak
denominator and L is the dynamic range of the pixel-values (typically this is
g#bits per pizel _ 1) k) = 0.01 and ky = 0.03 by default. A SSIM value closer to
one indicates a higher degree of similarity between the predicted image and the
reference image.

3 Results

To validate and evaluate the performance of the proposed architecture, we used
test images that were not given to the architecture during the training process.
Furthermore, we tested our model using an image reconstructed from only 110
projections to show that the model is not overfitting on the training data. In
addition to quantitative inspection of the results, the mean PSNR and SSIM of
the predicted images with respect to the angular range projections are calculated
and summed up in Table . Reconstruction results show the superiority of
the proposed method, compared to the existing ones.
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Number of angular Method Input images output images
projections mean PSNR  mean PSNR
Tikhonov 18.7 24
170 Zhang algorithm[13] - 30.7
Proposed method - 34.5
Tikhonov 15.5 23
150 Zhang algorithm[13] - 27.3
Proposed method - 33.5
Tikhonov 13.5 20
130 Zhang algorithm[13] - 24
Proposed method - 32.2
Tikhonov 104 18
110 Zhang algorithm[13] - 19.9
Used only for tests| Proposed method - 28

Table 2: Mean PSNR value for 110, 130, 150 and 170 angular range projections.
Comparison between the input and the predicted images obtained with Tikhonov
regularization, the architecture proposed by [I3] and the proposed method.

Number of angular Method Input images output images
projections mean SSIM  mean SSIM

Tikhonov 0.42 0.43
170 Zhang algorithm[13] - 0.98
Proposed method - 0.99
Tikhonov 0.37 0.4
150 Zhang algorithm[13] - 0.94
Proposed method - 0.97
Tikhonov 0.35 0.55
130 Zhang algorithm[13] - 0.87
Proposed method - 0.96
Tikhonov 0.17 0.28
110 Zhang algorithm[I3] - 0.74
Used only for tests| Proposed method - 0.81

Table 3: Mean SSIM value for 110, 130, 150 and 170 angular range projections.
Comparison between the input and the predicted images obtained with Tikhonov
regularization, the architecture proposed by [I3] and the proposed method.

4 Discussion and Conclusions

The deep learning framework including mathematical morphology efficiently en-
hances the limited-angle artifact removal with significantly fewer parameters
than other methods. Testing our method on images reconstructed from 130, 150
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or 170 projections gives very good results, even from 110 projections without
any training on this kind of data (see figure [7)).

Future work will focus on adapting our method to other kinds of CT artifacts

such as those from sparse-view projections, low-dose radiation. Moreover, the
study of the effectiveness of the proposed method directly on signograms (instead
of the images reconstructed by FBP) will also be of interest since the cause of
these different artifacts is indeed the lack of data on sinograms. The study of the
robustness of such architecture on more realistic data containing Poisson noise
will also be a focus for our future research.
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Input image from FBP reconstruction for a 130 angular projections (resolution
256x256)

Result of the extraction block represented by two convolution operations with
8 kernels of 3x3 and ReLu activation (resolution 256 x256)

Result of the mapping block represented by one convolution operation with 8
kernels of 1x1 and ReLu activation followed by an average pooling (resolution
128x128)

Fig. 6: Result of the 1% block of the proposed model
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Original image

FBP

Tikhonov

Zhang[13]

Proposed
algorithm

Fig. 7: Comparison of obtained results for 110, 130, 150 and 170 angular projec-
tions from original object. Using FBP reconstruction, Tikhonov regularization,

Zhang algorithm and our proposed algorithm.
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